Transposable elements and genome organization: a comprehensive survey of retrotransposons revealed by the complete Saccharomyces cerevisiae genome sequence.
نویسندگان
چکیده
We conducted a genome-wide survey of Saccharomyces cerevisiae retrotransposons and identified a total of 331 insertions, including 217 Ty1, 34 Ty2, 41 Ty3, 32 Ty4, and 7 Ty5 elements. Eighty-five percent of insertions were solo long terminal repeats (LTRs) or LTR fragments. Overall, retrotransposon sequences constitute >377 kb or 3.1% of the genome. Independent evolution of retrotransposon sequences was evidenced by the identification of a single-base pair insertion/deletion that distinguishes the highly similar Ty1 and Ty2 LTRs and the identification of a distinct Ty1 subfamily (Ty1'). Whereas Ty1, Ty2, and Ty5 LTRs displayed a broad range of sequence diversity (typically ranging from 70%-99% identity), Ty3 and Ty4 LTRs were highly similar within each element family (most sharing >96% nucleotide identity). Therefore, Ty3 and Ty4 may be more recent additions to the S. cerevisiae genome and perhaps entered through horizontal transfer or past polyploidization events. Distribution of Ty elements is distinctly nonrandom: 90% of Ty1, 82% of Ty2, 95% of Ty3, and 88% of Ty4 insertions were found within 750 bases of tRNA genes or other genes transcribed by RNA polymerase III. tRNA genes are the principle determinant of retrotransposon distribution, and there is, on average, 1.2 insertions per tRNA gene. Evidence for recombination was found near many Ty elements, particularly those not associated with tRNA gene targets. For these insertions, 5'- and 3'-flanking sequences were often duplicated and rearranged among multiple chromosomes, indicating that recombination between retrotransposons can influence genome organization. S. cerevisiae offers the first opportunity to view organizational and evolutionary trends among retrotransposons at the genome level, and we hope our compiled data will serve as a starting point for further investigation and for comparison to other, more complex genomes.
منابع مشابه
The Saccharomyces retrotransposon Ty5 influences the organization of chromosome ends.
Retrotransposons are ubiquitous components of eukaryotic genomes suggesting that they have played a significant role in genome organization. In Saccharomyces cerevisiae, eight of 10 endogenous insertions of the Ty5 retrotransposon family are located within 15 kb of chromosome ends, and two are located near the subtelomeric HMR locus. This genomic organization is the consequence of targeted tran...
متن کاملEvolutionary Genomics of Transposable Elements in Saccharomyces cerevisiae
Saccharomyces cerevisiae is one of the premier model systems for studying the genomics and evolution of transposable elements. The availability of the S. cerevisiae genome led to unprecedented insights into its five known transposable element families (the LTR retrotransposons Ty1-Ty5) in the years shortly after its completion. However, subsequent advances in bioinformatics tools for analysing ...
متن کاملRetrotransposons and their recognition of pol II promoters: a comprehensive survey of the transposable elements from the complete genome sequence of Schizosaccharomyces pombe.
The complete DNA sequence of the genome of Schizosaccharomyces pombe provides the opportunity to investigate the entire complement of transposable elements (TEs), their association with specific sequences, their chromosomal distribution, and their evolution. Using homology-based sequence identification, we found that the sequenced strain of S. pombe contained only one family of full-length tran...
متن کاملGenome Sequence and Analysis of a Stress-Tolerant, Wild-Derived Strain of Saccharomyces cerevisiae Used in Biofuels Research
The genome sequences of more than 100 strains of the yeast Saccharomyces cerevisiae have been published. Unfortunately, most of these genome assemblies contain dozens to hundreds of gaps at repetitive sequences, including transposable elements, tRNAs, and subtelomeric regions, which is where novel genes generally reside. Relatively few strains have been chosen for genome sequencing based on the...
متن کاملSelective autophagy regulates insertional mutagenesis by the Ty1 retrotransposon in Saccharomyces cerevisiae.
Macroautophagy (autophagy) is a bulk degradation system for cytoplasmic components and is ubiquitously found in eukaryotic cells. Autophagy is induced under starvation conditions and plays a cytoprotective role by degrading unwanted cytoplasmic materials. The Ty1 transposon, a member of the Ty1/copia superfamily, is the most abundant retrotransposon in the yeast Saccharomyces cerevisiae and act...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Genome research
دوره 8 5 شماره
صفحات -
تاریخ انتشار 1998